फोरेक्स रणनीति

एकाधिक चार्ट प्रदर्शित

एकाधिक चार्ट प्रदर्शित
  1. आपका mathcracker.com खाता और साइट। यदि आप एक ब्लॉग / साइट बनाते हैं वेबसाइट, आप अपने खाते और ब्लॉग की सुरक्षा को बनाए रखने के लिए ज़िम्मेदार हैं, और आप पूरी तरह से हैं खाते के तहत होने वाली सभी गतिविधियों के लिए जिम्मेदार और इसके संबंध में किए गए किसी भी अन्य कार्य ब्लॉग। आपको अपने ब्लॉग पर एक भ्रामक या गैरकानूनी तरीके से कीवर्ड का वर्णन या असाइन नहीं करना चाहिए, दूसरों की नाम या प्रतिष्ठा पर व्यापार करने के इरादे से, और mathcracker.com किसी भी विवरण या कीवर्ड को बदल या हटा सकता है जो अनुचित या गैरकानूनी, या अन्यथा मानता है mathcracker.com देयता का कारण बनने की संभावना। आपको तुरंत होना चाहिए अपने ब्लॉग, अपने खाते या किसी अन्य उल्लंघनों के किसी भी अनधिकृत उपयोग के mathcracker.com को सूचित करें सुरक्षा का। MathCracker.com आपके द्वारा किसी भी अधिनियम या चूक के लिए उत्तरदायी नहीं होगा, जिसमें कोई भी शामिल है ऐसे कृत्यों या चूक के परिणामस्वरूप किए गए किसी भी प्रकार के नुकसान।
  2. योगदानकर्ताओं की जिम्मेदारी। यदि आप एक ब्लॉग संचालित करते हैं, तो ब्लॉग पर टिप्पणी करें, पोस्ट सामग्री वेबसाइट, वेबसाइट पर लिंक पोस्ट करें, या अन्यथा बनाएं (या किसी भी तीसरे पक्ष को बनाने की अनुमति दें) सामग्री वेबसाइट के माध्यम से उपलब्ध (ऐसी कोई सामग्री, "सामग्री"), आप पूरी तरह से जिम्मेदार हैं उस सामग्री के परिणामस्वरूप, और किसी भी नुकसान की सामग्री। चाहे वह इस बात पर ध्यान दिए बिना प्रश्न में सामग्री पाठ, ग्राफिक्स, एक ऑडियो फ़ाइल, या कंप्यूटर सॉफ्टवेयर का गठन करती है। सामग्री बनाकर उपलब्ध, आप प्रतिनिधित्व एकाधिक चार्ट प्रदर्शित करते हैं और वारंट करते हैं:
    • सांप्री के डाउनलोड, प्रतिलिपि और उपयोग करने के लिए उत्सांतता नहीं है लेकिन कीसी तियरेरे के लिए कॉपीराइट, पेटेंट, ट्रेडार्क या व्यूपार गुपत अधिकारीता तक ही सीम नहीं है;
    • यदिवासी निओकता के पास बजदिक संधिक का अधिकार है, तौ के पास (i) प्रापित हुआ है अपेने निओकता से पोस्ट करना या सैमगरी उपचार करने के लिए अनिवार्य, साहित, लेकिन सीमत नहीं है कीसी भी सॉफ़्टवेयर, या (II) आप के रूप में से एक छoot कोमग्री में सब सबी अधिकारों के रूप में सुरक्षत किया है।
    • आपस सामग्र्री से संगत की भी तौती-दलित लाइसेस का पूर्वांत से पैल्न काया है, और सब कुछ है तत्यंकर्तांक कोसी भी उत्साक शार्तोत्सव कोने के लिए सफ़लातापुरक गुजरने के लिए आवेक चीन्ग;
    • सामग्रियों में कीसी भी वायरस, किड्डे, मैलवेयर, ट्रोजन हॉरस या अमे हंसिक शामिल याथपत नहीं होते हैं या विनाशकारी सामग्री;
    • सांप्री स्पैम नयी हैं, मैशन नहीं हैं तुषती दलिते हस्तांस पर यATAYAT को चाला करने के लिए डिजिन की गड़ी या अयॉन्ग वनीजिकिक सामग्री शामिल है TEESERE PAKIS की साइटों की खोज इंजन रैंक्सिंग, या भी गैरेकानूनी कस्य (जैसे) को ब्यांवा दे फ़िशिंग) या सामग्री के संरक्षक (जैसे
    • सामग्र्री अश्वलील नहीं है, इस तरह धमकी नहीं है सन्थाएएन, और किसी ताइरेर एक्शन के गोपनीता या प्रचारमेंट का उल्लन्न्ंह नहीं करना है;
    • आपका ब्लॉग अवांसेत इलेक्ट्रॉनिक संख्य्खल स्पैम लिंक के माधम से विजितापित नहीं हो साइचर समूह, ईमेल अनुचार, अन्य ब्लॉग और वेब साइंसेन्स, और इसी रूपह की अनैथहे विथियाम;
    • आप के बारे में पता है व्यति या कन्पनी। OuaDahharran के लिए, आप के पास यूपीएएआर या नाम कीसी अन्य व्यति का नाम नहीं अपेने या आप के लिए अलेवा अमिना; तथा
    • आशके के आधार पर सामग्री के मैमले में मिलें कंड्यूटर कोड़ा शमिल है, सटीक रूप से वर्गीकात और / या सामग्रे के प्रकोजर, प्रसित, तत्काल्तर प्रभावा का क्रमणन एकाधिक चार्ट प्रदर्शित किया गाया, चेहरा अनने के लिए वास्तविक किया गाया Mathcracker.com या अनथा।

सेवा की शर्तें

निम्नलिखित नियम और शर्तें MathCracker.com वेबसाइट और सभी के सभी उपयोग को नियंत्रित करती हैं विषय, वेबसाइट पर या उसके माध्यम से उपलब्ध सेवाएं और उत्पाद (एक साथ, वेबसाइट)। वेबसाइट का स्वामित्व है और mathcracker.com ("mathcracker.com") द्वारा संचालित। वेबसाइट है यहां मौजूद सभी शर्तों और शर्तों के संशोधन के बिना आपकी स्वीकृति के अधीन और अन्य सभी ऑपरेटिंग नियम, नीतियां (बिना सहित) सीमा, मथक्रैकर की गोपनीयता नीति) और प्रक्रियाएं जो हो सकती हैं MathCracker.com (सामूहिक रूप से, "समझौते") द्वारा इस साइट पर समय-समय पर प्रकाशित।

वेबसाइट तक पहुंचने या उपयोग करने से पहले कृपया इस समझौते को ध्यान से पढ़ें। के किसी भी हिस्से तक पहुँच या उपयोग करके वेब साइट, आप इस समझौते के नियमों और शर्तों से बाध्य होने के लिए सहमत हैं। यदि आप सभी से सहमत नहीं हैं इस समझौते के नियम और शर्तें, फिर आप वेबसाइट तक नहीं पहुंच सकते हैं या किसी भी सेवा का उपयोग नहीं कर सकते हैं। अगर ये नियम और शर्तों को mathcracker.com द्वारा एक प्रस्ताव माना जाता है, स्वीकृति स्पष्ट रूप से सीमित है ये शर्तें। वेबसाइट केवल उन व्यक्तियों के लिए उपलब्ध है जो कम से कम 13 वर्ष हैं पुराना।

  1. आपका mathcracker.com खाता और साइट। यदि आप एक ब्लॉग / साइट बनाते हैं वेबसाइट, आप अपने खाते और ब्लॉग की सुरक्षा को बनाए रखने के लिए ज़िम्मेदार हैं, और आप पूरी तरह से हैं खाते के तहत होने वाली सभी गतिविधियों के लिए जिम्मेदार और इसके संबंध में किए गए किसी भी अन्य कार्य ब्लॉग। आपको अपने ब्लॉग पर एक भ्रामक या गैरकानूनी तरीके से कीवर्ड का वर्णन या असाइन नहीं करना चाहिए, दूसरों की नाम या प्रतिष्ठा पर व्यापार करने के इरादे से, और mathcracker.com किसी भी विवरण या कीवर्ड को बदल या हटा सकता है जो अनुचित या गैरकानूनी, या अन्यथा मानता है mathcracker.com देयता का कारण बनने की संभावना। आपको तुरंत होना चाहिए अपने ब्लॉग, अपने खाते या किसी अन्य उल्लंघनों के किसी भी अनधिकृत उपयोग के mathcracker.com को सूचित करें सुरक्षा का। एकाधिक चार्ट प्रदर्शित एकाधिक चार्ट प्रदर्शित MathCracker.com आपके द्वारा किसी भी अधिनियम या चूक के लिए उत्तरदायी नहीं होगा, जिसमें कोई भी शामिल है ऐसे कृत्यों या चूक के परिणामस्वरूप किए गए किसी भी प्रकार के नुकसान।
  2. योगदानकर्ताओं की जिम्मेदारी। यदि आप एक ब्लॉग संचालित करते हैं, तो ब्लॉग एकाधिक चार्ट प्रदर्शित पर टिप्पणी करें, पोस्ट सामग्री वेबसाइट, वेबसाइट पर लिंक पोस्ट करें, या अन्यथा बनाएं (या किसी भी तीसरे पक्ष को बनाने की अनुमति दें) सामग्री वेबसाइट के माध्यम से उपलब्ध (ऐसी कोई सामग्री, "सामग्री"), आप पूरी तरह से जिम्मेदार हैं उस सामग्री के परिणामस्वरूप, और किसी भी नुकसान की सामग्री। चाहे वह इस बात पर ध्यान दिए बिना प्रश्न में सामग्री पाठ, ग्राफिक्स, एक ऑडियो फ़ाइल, या कंप्यूटर सॉफ्टवेयर का गठन करती है। सामग्री बनाकर उपलब्ध, आप प्रतिनिधित्व करते हैं और वारंट करते हैं:
    • सांप्री के डाउनलोड, प्रतिलिपि और उपयोग करने के लिए उत्सांतता नहीं है लेकिन कीसी तियरेरे के लिए कॉपीराइट, पेटेंट, ट्रेडार्क या व्यूपार गुपत अधिकारीता तक ही सीम नहीं है;
    • यदिवासी निओकता के पास बजदिक संधिक का अधिकार है, तौ के पास (i) प्रापित हुआ है अपेने निओकता से पोस्ट करना या सैमगरी उपचार करने के लिए अनिवार्य, साहित, लेकिन सीमत नहीं है कीसी भी सॉफ़्टवेयर, या (II) आप के रूप में से एक छoot कोमग्री में सब सबी अधिकारों के रूप में सुरक्षत किया है।
    • आपस सामग्र्री से संगत की भी तौती-दलित लाइसेस का पूर्वांत से पैल्न काया है, और सब कुछ है तत्यंकर्तांक कोसी भी उत्साक शार्तोत्सव कोने के लिए सफ़लातापुरक गुजरने के लिए आवेक चीन्ग;
    • सामग्रियों में कीसी भी वायरस, किड्डे, मैलवेयर, ट्रोजन हॉरस या अमे हंसिक शामिल याथपत नहीं होते हैं या विनाशकारी सामग्री;
    • सांप्री स्पैम नयी हैं, मैशन नहीं हैं तुषती दलिते हस्तांस पर यATAYAT को चाला करने के लिए डिजिन की गड़ी या अयॉन्ग वनीजिकिक सामग्री शामिल है TEESERE PAKIS की साइटों की खोज इंजन रैंक्सिंग, या भी गैरेकानूनी कस्य (जैसे) को ब्यांवा दे फ़िशिंग) या सामग्री के संरक्षक (जैसे
    • सामग्र्री अश्वलील नहीं है, इस तरह धमकी नहीं है सन्थाएएन, और किसी ताइरेर एक्शन के गोपनीता या प्रचारमेंट का उल्लन्न्ंह नहीं करना है;
    • आपका ब्लॉग अवांसेत इलेक्ट्रॉनिक संख्य्खल स्पैम लिंक के माधम से विजितापित नहीं हो साइचर समूह, ईमेल अनुचार, अन्य ब्लॉग और वेब साइंसेन्स, और इसी रूपह की अनैथहे विथियाम;
    • आप के बारे में पता है व्यति या कन्पनी। OuaDahharran के लिए, आप के पास यूपीएएआर या नाम कीसी अन्य व्यति का नाम नहीं अपेने या आप के लिए अलेवा अमिना; तथा
    • आशके के आधार पर सामग्री के मैमले में मिलें कंड्यूटर कोड़ा शमिल है, सटीक रूप से वर्गीकात और / या सामग्रे के प्रकोजर, प्रसित, तत्काल्तर प्रभावा का क्रमणन किया गाया, चेहरा अनने के लिए वास्तविक किया गाया Mathcracker.com या अनथा।

अपनी वेबासाइट पर शामिल के लिए mathcracker.com पर सामग्री सबमिट कर्क, आप अनुदान mathcracker.com एक विश्वव्यापी, रॉयल्टी मुक्टे, और पुण: पश करने के लिए गैअर-विशिप्ट लाइसेस, पूर तैरह से प्रादेशत, विष्ण और प्रचार के उसी उदाहरण के लिए सामंगी को संशधि, निरुत्त और प्रेशत क्रांति आपका ब्लॉग। यदिदी आपस सामग्री को हट्टेते हैं, तो mathcracker.com इस अपान के लिए प्रेरित के रूप में उपयोग करने के लिए वेबसाइट से, लेकिन आप स्वीकर करते हैं तुषंत अनुपाल्द्।

उनमें सेसी भी प्रतिबद्ध या वारंटी को सीमित किता, mathcracker.com का अधीरता है (अपलांकि दायतो नहीं), मथक्रैकर के एकमात्र विवरेक (i) इनकार या मैथक्रैकर की उथित राय में, कीसी भी सामग्री को वटा देव, उल्लन्न्ण करता है कोई भी mathcracker.com नीती की किसी भी तलह से हनिकारक या देतिजनक है, या (II) सिस्टम या कीसी भीख के लिए कीसी भी व्योधित्ता या इकाई को वेबासाइट के पालन और उपयोग से इनकार करने के लिए, गणित के एकमात्र विवारुकानुसारर। Mathcracker.com के पास नहीं होंगा पहला भुग्तान की गड़ी की भी राशी की वपासी प्रादन के लिए देयित्व।

  • आमोन्यन।
    कीसी उत्पादवा का सेवा का चायन करके, आप mathcracker.com को एक बार और / या भुगताण करने के लिए सुनते हैं मासिक या वार्षिक सदसता शूल्क का संतन दया गाया (अकारिष्ट भुगतान शार्तेन समुंदर में शामल की जा सके संचार)। आपेके द्वारा साइन अप करने के लिए दीन पूर्व-वेतन आधी पर सदसता भुगतान शुले लिया जायगा एक अपग्रेड और पारिक या वार्षिक सदसता अविश्वाली के लिए उपेवा के उपयोग को यहेगा संकेत दया। भुग्तान लौसी औग्गी नहीं हैं।
  • स्वचालित नवीकरण।
    जब तक आपला सादता अविश्वत के अंत से थे MathCracker.com को सूचित नहीं करें जो आपको चहिए सदसता रदता करने के लिए, आप के रूपांतता स्वचालित रूप से नवनीकते हो जाएजी और आप के लिए इप्टा करने के लिए लागू करने के लिए ऐसी सदसता के लिए तत्कालीन लागू वार्षिक या मासिक सदसता शूल्क (साथ ही सेथिसी भी कर) कीसी भी क्राइडिट या अन्य भुगतान तंत्र का पालनोग कराके स्टेशन के लिए रिकॉर्ड है। उन्नीन रद्दे काया जा सका है लेखन में mathcracker.com पर अपना अनुरख सबमिट करकेई भी समय।
  • शूल्क; भugatan। एक सेवा खाएटे के लिए साइन अप करने के लिए सहमत हैं भुग्तान mathcracker.com लागू सेटअप शुक्स और पुन्नरती शूल्क का भुगटन करें। लागू शूल्क दीन से शूरू होना पर चालान किया जायगा आशाकी सेवेंथेपत की गेग और ओसी सेवॉन्ग का पालन करने के लिए। Mathcracker.com रिजर्व भुगुण शार्तों और शूल्क को बदले का अधिकार टीईएस (30) दिंले आपके आप को निखेतन। सेवॉन्ना कोसी भी सम्येके द्वार रादाका जा सका है टीईएस (30) दीन ल्विट नोपिस mathcracker.com पर।
  • सहायता। यदि अगकी सेवा में प्रॉथमिकता ईमेरन तक विंचा शामिल है। "ईमेल समर्मन "कीसी भी पर ईमेल द्वार तेकेनीकी सहता सहायता के लिए अनुवाद करना की क्षात्मा का मटलब है समय (mathcracker.com द्वार उदाहरण के लिए एक व्यास्यायिक पद) वीईपी सेवा के उपयोग से संगत। "वरीता" इसका मतलब है कि समरथन मानव के पालनकर्ता के लिए संतान पर पारीमिकता देता है मुफ़्त mathcracker.com सेवें। सबी समर्मन के अनुर प्रन्दन किया जायगा Mathcracker.com मानक सेवा प्रोत्संग के साथ, प्रक्रहित और नीतियों।

संबंधित पोस्ट:

यदि आपके पास कोई सुझाव है, या यदि आप एक टूटी हुई सॉल्वर / कैलकुलेटर की रिपोर्ट करना चाहते हैं, तो कृपया संकोच न करें निद्रक्ता

iTunes पुस्तकालय विश्लेषक - आइट्यून्स चार्ट करने के लिए लायब्रेरी विश्लेषण

अपने iTunes पुस्तकालय और आपके संगीत स्वाद के बारे में अधिक जानना चाहते हैं? विश्लेषण अपने iTunes पुस्तकालय सुपर विश्लेषकके साथ। यह चार्ट की एक किस्म बनाता है और आँकड़े आपके iTunes पर आधारित पुस्तकालय, कितने गीतों में प्रत्येक शैली के रूप, जो घंटे के दिन के आप ज्यादातर संगीत के लिए सुनो, कैसे जल्दी से अपने iTunes पुस्तकालय, कैसे के बारे में गीत की गुणवत्ता, बढ़ रहा है और क्या कलाकारों/एल्बम/शैलियों/दशकों से ज्यादातर खेला हैं।

सभी उत्पन्न चार्ट् स और आँकड़े दूसरों के साथ छवि, पीडीएफ या HTML वेब पेज के माध्यम से साझा किया जा करने के लिए आसान कर रहे हैं। अधिक iTunes से आइपॉड सॉफ्टवेयर >>

चार्ट्स और सुपर विश्लेषक द्वारा आँकड़े

कितने गाने आप प्रत्येक शैली में है

सबसे ज्यादा खेला कलाकारों और एल्बम

समय के साथ iTunes पुस्तकालय का विकास

प्रत्येक दिन के घंटे के दौरान आपके पास कितने गाने सुनें

सुपर विश्लेषक आवश्यकताओं और उपयोग

1. दोनों Windows और मैक समर्थित एकाधिक चार्ट प्रदर्शित हैं।

3. नि: शुल्क डाउनलोड करने के लिए और का उपयोग करें। इसे उपयोग करने के लिए, किसी फ़ोल्डर के लिए फ़ाइल खोल दो, और चलाने के लिए SuperAnalyzer.jar पर डबल क्लिक करें।

Rscit Questions PDF in Hindi

RSCIT Important Questions Answers

यदि आप Rscit Questions PDF in Hindi प्राप्त करना चाहते हैं तो आप बिल्कुल सही पोस्ट पर हो । यहां आपको राजस्थान में होने वाली होने वाली rscit RKCL परीक्षा में आने वाले महवपूर्ण प्रश्न मिलेंगे । इस rscit RKCL modal paper पोस्ट में आपको परीक्षा पैटर्न पर आधारित 35 प्रश्न जो कि vmou kota की पुस्तक पर आधारित है। जिन्हें पढ़कर आप rscit परीक्षा में अच्छे अंक प्राप्त कर सकते है।

कार्यात्मक प्रवाह ब्लॉक आरेख

एक कार्यात्मक प्रवाह ब्लॉक आरेख ( FFBD ) एक बहु स्तरीय, समय अनुक्रम, चरण-दर-चरण प्रवाह का एक का चित्र है प्रणाली के कार्यात्मक प्रवाह। [२] इस संदर्भ में "कार्यात्मक" शब्द कार्यात्मक प्रोग्रामिंग या गणित में इसके उपयोग से अलग है , जहां "प्रवाह" के साथ "कार्यात्मक" को जोड़ना अस्पष्ट होगा। यहां, "कार्यात्मक प्रवाह" संचालन की अनुक्रमण से संबंधित है, जिसमें "प्रवाह" तीर पूर्व संचालन की सफलता पर निर्भरता व्यक्त करते हैं। FFBDs कार्यात्मक ब्लॉकों के बीच इनपुट और आउटपुट डेटा निर्भरता को भी व्यक्त कर सकते हैं, जैसा कि नीचे दिए गए आंकड़ों में दिखाया गया है, लेकिन FFBDs मुख्य रूप से अनुक्रमण पर ध्यान केंद्रित करते हैं।

FFBD संकेतन 1950 के दशक में विकसित किया गया था, और व्यापक रूप से शास्त्रीय सिस्टम इंजीनियरिंग में उपयोग किया जाता है । एफएफबीडी फ्लो चार्ट , डेटा फ्लो डायग्राम , कंट्रोल फ्लो डायग्राम , गैंट चार्ट , पीईआरटी डायग्राम और आईडीईएफ के साथ क्लासिक बिजनेस प्रोसेस मॉडलिंग पद्धतियों में से एक है । [३]

FFBDs को फंक्शनल फ्लो डायग्राम , फंक्शनल ब्लॉक डायग्राम और फंक्शनल फ्लो के रूप में भी जाना जाता है । [४]

प्रोसेस फ्लो के दस्तावेजीकरण के लिए पहली संरचित विधि, फ्लो प्रोसेस चार्ट , फ्रैंक गिलब्रेथ द्वारा 1921 में अमेरिकन सोसाइटी ऑफ मैकेनिकल इंजीनियर्स (एएसएमई) के सदस्यों के लिए "प्रोसेस चार्ट-वन बेस्ट वे खोजने में पहला कदम" प्रस्तुति के रूप में पेश किया गया था। [५] गिलब्रेथ के औजारों ने जल्दी ही औद्योगिक इंजीनियरिंग पाठ्यक्रम में अपनी जगह बना ली।

1930 के दशक में, एक औद्योगिक इंजीनियर, एलन H मोगेनसेन में अपने काम सरलीकरण सम्मेलन में औद्योगिक इंजीनियरिंग के उपकरणों में से कुछ के उपयोग में व्यापार के लोगों को प्रशिक्षण शुरू हुआ Lake Placid , न्यूयॉर्क । 1944 में Mogensen की कक्षा से स्नातक, Art Spinanger, टूल को वापस प्रॉक्टर एंड गैंबल में ले गया, जहाँ उन्होंने अपना डेलिब्रेट मेथड्स चेंज प्रोग्राम विकसित किया। एक और 1944 स्नातक, बेन एस ग्राहम , स्टैंडर्ड रजिस्टर इंडस्ट्रियल में फॉर्मक्राफ्ट इंजीनियरिंग के निदेशक , ने कई दस्तावेजों और उनके संबंधों को प्रदर्शित करने के लिए बहु-प्रवाह प्रक्रिया चार्ट के अपने विकास के साथ सूचना प्रसंस्करण के लिए प्रवाह प्रक्रिया चार्ट को अनुकूलित किया। 1947 में, ASME ने गिलब्रेथ के मूल कार्य से प्राप्त संचालन और प्रवाह प्रक्रिया चार्ट के लिए ASME मानक के रूप में एक प्रतीक सेट को अपनाया। [५]

आधुनिक कार्यात्मक प्रवाह ब्लॉक आरेख 1950 के दशक में TRW इनकॉर्पोरेटेड, एक रक्षा-संबंधित व्यवसाय द्वारा विकसित किया गया था । [६] १९६० के दशक में नासा द्वारा अंतरिक्ष प्रणालियों और उड़ान मिशनों में घटनाओं के समय अनुक्रम की कल्पना करने के लिए इसका उपयोग किया गया था । [७] सिस्टम कार्यों के निष्पादन के क्रम को दिखाने के लिए FFBDs का व्यापक रूप से शास्त्रीय सिस्टम इंजीनियरिंग में उपयोग किया जाने लगा । [३]

FFBD को स्तरों की एक श्रृंखला में विकसित किया जा सकता है। FFBDs कार्यात्मक अपघटन के माध्यम से पहचाने गए समान कार्यों को दिखाते हैं और उन्हें उनके तार्किक, अनुक्रमिक संबंध में प्रदर्शित करते हैं। उदाहरण के लिए, एक अंतरिक्ष यान के पूरे उड़ान मिशन को एक शीर्ष स्तर FFBD में परिभाषित किया जा सकता है, जैसा कि चित्र 2 में दिखाया गया है। पहले स्तर के आरेख में प्रत्येक ब्लॉक को कार्यों की एक श्रृंखला में विस्तारित किया जा सकता है, जैसा कि दूसरे स्तर के आरेख में दिखाया गया है। "मिशन संचालन करें।" ध्यान दें कि आरेख इनपुट (परिचालन कक्षा में स्थानांतरण) और आउटपुट (अंतरिक्ष परिवहन प्रणाली कक्षा में स्थानांतरण) दोनों को दिखाता है, इस प्रकार इंटरफ़ेस पहचान और नियंत्रण प्रक्रिया शुरू करता है। दूसरे स्तर के आरेख में प्रत्येक ब्लॉक को क्रमिक रूप से कार्यों की एक श्रृंखला में विकसित किया जा सकता है, जैसा कि चित्र 2 पर तीसरे स्तर के आरेख में दिखाया गया है। [8]

इन आरेखों का उपयोग आवश्यकताओं को विकसित करने और लाभदायक व्यापार अध्ययनों की पहचान करने के लिए किया जाता है। उदाहरण के लिए, क्या अंतरिक्ष यान एंटेना ट्रैकिंग और डेटा रिले उपग्रह (टीडीआरएस) का अधिग्रहण केवल तभी करता है जब पेलोड डेटा प्रसारित किया जाना है, या क्या यह आपातकालीन आदेशों की प्राप्ति या आपातकालीन डेटा के प्रसारण की अनुमति देने के लिए लगातार टीडीआरएस को ट्रैक करता है? FFBD में वैकल्पिक और आकस्मिक संचालन भी शामिल हैं, जो मिशन की सफलता की संभावना में सुधार करते हैं। प्रवाह आरेख प्रणाली के कुल संचालन की समझ प्रदान करता है, परिचालन और आकस्मिक प्रक्रियाओं के विकास के लिए आधार के रूप में कार्य करता है, और उन क्षेत्रों को इंगित करता है जहां परिचालन प्रक्रियाओं में परिवर्तन समग्र प्रणाली संचालन को सरल बना सकता है। कुछ मामलों में, वैकल्पिक FFBD का उपयोग डेटा प्राप्त होने तक किसी विशेष फ़ंक्शन को संतुष्ट करने के विभिन्न साधनों का प्रतिनिधित्व करने के लिए किया जा सकता है, जो विकल्पों के बीच चयन की अनुमति देता है। [8]

मुख्य विशेषताएं

प्रमुख FFBD विशेषताओं का अवलोकन: [1]

  • फंक्शन ब्लॉक : FFBD पर प्रत्येक फंक्शन अलग होना चाहिए और सिंगल बॉक्स (सॉलिड लाइन) द्वारा दर्शाया जाना चाहिए। प्रत्येक फ़ंक्शन को सिस्टम तत्वों द्वारा पूरा करने के लिए निश्चित, परिमित, असतत कार्रवाई के लिए खड़ा होना चाहिए।
  • फंक्शन नंबरिंग : प्रत्येक स्तर में एक सुसंगत संख्या योजना होनी चाहिए और फ़ंक्शन उत्पत्ति से संबंधित जानकारी प्रदान करनी चाहिए। ये संख्याएं पहचान और संबंध स्थापित करती हैं जो सभी कार्यात्मक विश्लेषण और आवंटन गतिविधियों के माध्यम से एकाधिक चार्ट प्रदर्शित चलती हैं और निचले से शीर्ष स्तर तक पता लगाने की सुविधा प्रदान करती हैं।
  • कार्यात्मक संदर्भ : प्रत्येक आरेख में एक कार्यात्मक संदर्भ (कोष्ठक में बॉक्स) का उपयोग करके अन्य कार्यात्मक आरेखों का संदर्भ होना चाहिए।
  • प्रवाह कनेक्शन : फ़ंक्शन को जोड़ने वाली लाइनें केवल फ़ंक्शन प्रवाह को इंगित करना चाहिए, न कि समय या मध्यवर्ती गतिविधि में चूक।
  • प्रवाह की दिशा : आरेखों को इस तरह से तैयार किया जाना चाहिए कि प्रवाह की दिशा आम तौर पर बाएं से दाएं हो। कार्यात्मक प्रवाह को इंगित करने के लिए अक्सर तीर का उपयोग किया जाता है।
  • समिंग गेट्स : एक सर्कल का उपयोग एक योग गेट को दर्शाने के लिए किया जाता है और इसका उपयोग तब किया जाता है जब AND/OR मौजूद होता है। AND का उपयोग समानांतर कार्यों को इंगित करने के लिए किया जाता है और आगे बढ़ने के लिए सभी शर्तों को पूरा किया जाना चाहिए। OR का उपयोग यह इंगित करने के लिए किया जाता है कि वैकल्पिक पथ आगे बढ़ने के लिए संतुष्ट हो सकते हैं।
  • गो और नो-गो पथ : "जी" और "बार जी" का उपयोग "गो" और "नो-गो" स्थितियों को दर्शाने के लिए किया जाता है। इन प्रतीकों को वैकल्पिक पथों को इंगित करने के लिए एक विशेष फ़ंक्शन को छोड़कर रेखाओं के निकट रखा जाता है।

समारोह प्रतीकवाद

एक फ़ंक्शन को एक आयत द्वारा दर्शाया जाएगा जिसमें फ़ंक्शन का शीर्षक (एक क्रिया क्रिया जिसके बाद एक संज्ञा वाक्यांश होता है) और इसकी अद्वितीय दशमलव सीमांकित संख्या होती है। एक क्षैतिज रेखा इस संख्या और शीर्षक को अलग करेगी, जैसा कि ऊपर चित्र 3 में दिखाया गया है। यह आंकड़ा यह एकाधिक चार्ट प्रदर्शित भी दर्शाता है कि एक संदर्भ फ़ंक्शन का प्रतिनिधित्व कैसे किया जाए, जो एक विशिष्ट FFBD के भीतर संदर्भ प्रदान करता है। संदर्भ फ़ंक्शन के उपयोग के संबंध में उदाहरण के लिए चित्र 9 देखें। [९]

पर ग्रिड लेआउट Storyboard That

Storyboard That जिसमें आपके स्टोरीबोर्ड के लिए उपलब्ध कुछ अलग लेआउट हैं। ग्रिड लेआउट एक प्रारूप विकल्प है, जो दो अक्षों में वस्तुओं की तुलना करता है। ग्रिड अक्सर जानकारी के साथ स्टोरीबोर्ड के लिए सबसे अच्छा विकल्प होते हैं, क्योंकि मैट्रिक्स में ग्रिड का आयोजन किया जाता है सरल तुलना के लिए, हम सुझाव देते हैं कि आप टी-चार्ट का उपयोग करें।

ग्रिड आपको सहायता करते हैं:

  • सूचना व्यवस्थित करें
  • किसी विषय या विषय के एकाधिक लक्षणों की तुलना करें
  • पढ़ने के लिए ग्राफ़िक आयोजकों बनाएँ
  • दृश्य टेबल्स बनाएं

ग्रिड लेआउट को तोड़कर

Grid - 3X2

पंक्ति शीर्षक के साथ बाएं हाथ कॉलम

ग्रिड लेआउट कोशिकाओं के अतिरिक्त खिताब के लिए अलग बक्से वाले पारंपरिक लेआउट से खुद को अलग करता है। सभी ग्रिड लेआउट में बाईं ओर एक कॉलम है जिसे हटाया नहीं जा सकता। विषय, विषय, या प्रमुख महत्वपूर्ण मानदंडों को इस कॉलम के शीर्षक बार में नाम दिया जाना चाहिए। शीर्षक और शीर्षक बार की स्थिति परिवर्तित नहीं की जा सकती, लेकिन आप फ़ॉन्ट और रंग चुनने के लिए स्वतंत्र हैं। शीर्षक बार खाली खाली सफेद स्थान को छोड़ दें, या शीर्षक बार में शब्द का एक उदाहरण या विवरण दिखाने के लिए इसका उपयोग करें।

हालांकि आप अपनी ग्रिड को कॉन्फ़िगर कर सकते हैं, लेकिन आप चुनते हैं, तो ग्रिड को डिज़ाइन किया गया था ताकि मुख्य विषय पंक्ति शीर्षक बार पर कब्जा कर सकें, एकाधिक चार्ट प्रदर्शित और मापदंड या उदाहरण कॉलम में भरें। अधिक उन्नत या अधिक विस्तृत स्टोरीबोर्ड के लिए, सेल में छवियों को समझाने के लिए विवरण बॉक्स का उपयोग करें।

The Pearl Symbolism

कक्षा का उपयोग करें: मैं अपने कक्षा में ग्रिड लेआउट का उपयोग कैसे कर सकता हूं?

ग्रिड एकाधिक चार्ट प्रदर्शित लेआउट एक चार्ट प्रारूप में जानकारी प्रस्तुत करने के लिए एकदम सही है। विज्ञान प्रयोग डेटा संग्रह, उदाहरणों के साथ साहित्यिक तत्व दिखा रहा है, युद्ध के लिए कारक, गणित शब्दावली, तर्क के दो पक्षों की तुलना, और ग्रिड के साथ और अधिक संभव है।

हमारे शिक्षक लेखकों ने ग्रिड लेआउट के लिए कई अतिरिक्त संभावनाएं पूरी की हैं। आप पाएंगे कि यह लेआउट जानकारी इकट्ठा करने और प्रदर्शित करने या प्रगति की प्रक्रिया के लिए बहुत उपयोगी है, लेकिन शायद आप ग्रिड का उपयोग करने के लिए और भी अधिक तरीकों की खोज करेंगे। हमारे सुझावों पर एक नज़र डालें

इसके लिए ग्रिड लेआउट का उपयोग करें:

अंग्रेजी भाषा कला

लंबे ग्रंथों को पढ़ने के दौरान या बाद में वर्णों या साहित्यिक उपकरणों पर चार्ट की जानकारी। ग्रिड लेआउट एक उत्कृष्ट संदर्भ मार्गदर्शिका या अध्ययन पत्रक बनाता है।

उदाहरण क्रियाएँ

  • पूर्वाभास या भविष्यवाणी करना
  • साहित्यिक थीम
  • व्यंग्य

ग्रिड दो या दो से अधिक विषयों की कई विशेषताओं की तुलना करते समय इस्तेमाल करने के लिए उत्कृष्ट ग्राफिक आयोजकों हैं।

उदाहरण क्रियाएँ

  • समय के साथ परिवर्तन
  • उन्नत तुलना
  • पाठ विश्लेषण

विदेशी भाषा

एक नई भाषा सीखते समय, ट्रैक रखने के लिए बहुत सारे नये शब्द होते हैं! ग्रिड Storyboard That पर दृश्य उदाहरण के साथ क्रिया संयोग के लिए एकदम सही है!

उदाहरण क्रियाएँ

  • शब्दावली
  • विकार
  • एक प्रक्रिया के लिए निर्देश

स्टेम (विज्ञान, प्रौद्योगिकी, इंजीनियरिंग और गणित)

ग्रिड लेआउट के लिए योजना, अनुसंधान, सूचना एकत्र करना और अधिक आदर्श हैं आप मुद्रित ग्रिड स्टोरीबोर्ड पर भौतिक वस्तुओं को व्यवस्थित करके हेरफेर का उपयोग भी कर सकते हैं!

उदाहरण क्रियाएँ

  • संदर्भ वस्तु
  • बोर्ड छंटनी
  • सूचना एकत्र करने के लिए चार्ट

अपनी कक्षा में स्टोरीबोर्ड का उपयोग कैसे करें, इसके बारे में अधिक विचारों के लिए, हमारी कुछ गतिविधियों की गतिविधियों, टेम्पलेट स्टोरीबोर्ड और अधिक के लिए योजनाएं देखें!

Storyboard That तक पहुंच - यदि आप पहले से ही नहीं हैं, तो हमारे शैक्षिक संस्करण के दो सप्ताह के नि: शुल्क परीक्षण शुरू करें ।

विशेष शिक्षा के लिए आवेदन

Storyboard That कक्षा में सभी के लिए एक मजेदार उपकरण है, लेकिन आईईपी और 504 योजनाओं पर छात्रों के लिए विशेष रूप से उपयोगी हो सकता है। ग्राफ़िक आयोजक एक छात्र की सोच को व्यवस्थित या निर्देशित करने का एक तरीका के रूप में काम करते हैं। ग्रिड लेआउट एक शीर्षक सेल के साथ चार्ट और डिजिटल कहानी कहने के लिए एकदम सही है।

Storyboard That रचनाकारों को अपने ग्राफ़िक आयोजकों में चित्र, रंग और पाठ को शामिल करने की अनुमति देता है सभी छात्रों के तारकीय हस्तलिपि या ड्राइंग क्षमताओं नहीं हैं। स्टोरीबोर्ड-शैली प्रारूप को डिजिटल कहानी में शामिल करना, लिखावट की क्षमताओं और ड्राइंग प्रतिभा को अप्रासंगिक बनाने की अनुमति देता है। सभी छात्रों को एक ग्राफिक आयोजक के साथ अंत में वे बाद में वापस देख सकते हैं और अभी भी इसे समझने में सक्षम हो।

Selecting Units of Measurement

विशेष शिक्षा के लिए ग्रिड स्टोरीबोर्ड का उपयोग करने पर कुछ अतिरिक्त विचार यहां दिए गए हैं:

  • एक कहानी में वर्णों का ट्रैक रखें
  • दृश्य शब्दावली बोर्ड बनाएँ
  • पेंसिल और पेपर असाइनमेंट के बजाय Storyboard That उपयोग करें
  • गेम्स, पुरस्कार और संचार की जरूरतों के लिए बोर्ड बनाएं
  • दिन-प्रतिदिन परिवर्तनों को ट्रैक करें

विशेष शिक्षा में स्टोरीबोर्ड को एकीकृत करने के बारे में और अधिक विचारों के लिए, कृपया हमारे विशेष शिक्षा से संबंधित अन्य लेख देखें।

  • Holy Cross at Sunrise • Sean MacEntee • लाइसेंस Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Jupiter • tonynetone • लाइसेंस Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Microscope • Calsidyrose • लाइसेंस Attribution (http://creativecommons.org/licenses/by/2.0/)
  • The Fighting Cocks - pub in Moseley - Temperature Gauge / Barometer • ell brown • लाइसेंस Attribution (http://creativecommons.org/licenses/by/2.0/)

गोपनीयता और सुरक्षा

Storyboard That प्रत्येक संस्करण में एक अलग गोपनीयता और सुरक्षा मॉडल है जो अपेक्षित उपयोग के अनुरूप है।

निशुल्क संस्करण

सभी स्टोरीबोर्ड सार्वजनिक हैं और इसे किसी भी व्यक्ति द्वारा देखा और कॉपी किया जा सकता है वे Google खोज परिणामों में भी दिखाई देंगे।

व्यक्तिगत संस्करण

लेखक स्टोरीबोर्ड को सार्वजनिक करने या अनलिस्टेड के रूप में चिह्नित करने का विकल्प चुन सकता है। असूचीबद्ध स्टोरीबोर्ड को एक लिंक के माध्यम से साझा किया जा सकता है, लेकिन अन्यथा छिपी रहेंगे

शैक्षिक संस्करण

सभी स्टोरीबोर्ड और छवियां निजी और सुरक्षित हैं शिक्षक अपने सभी छात्रों के स्टोरीबोर्ड को देख सकते हैं, लेकिन छात्र केवल अपने स्वयं का ही विचार कर सकते हैं। कोई भी एकाधिक चार्ट प्रदर्शित और कुछ भी नहीं देख सकता है। यदि वे साझाकरण की अनुमति देना चाहते हैं तो शिक्षक सुरक्षा को कम करने का विकल्प चुन सकते हैं।

व्यापार संस्करण

सभी स्टोरीबोर्ड निजी और माइक्रोसॉफ्ट Azure द्वारा होस्ट एंटरप्राइज क्लास फ़ाइल सुरक्षा का उपयोग कर पोर्टल के लिए सुरक्षित हैं पोर्टल के भीतर, सभी उपयोगकर्ता सभी स्टोरीबोर्ड को देख सकते हैं और कॉपी कर सकते हैं। इसके अलावा, किसी भी स्टोरीबोर्ड को "शेयर करने योग्य" बनाया जा सकता है, जहां स्टोरीबोर्ड के लिए एक निजी लिंक बाह्य रूप से साझा किया जा सकता है

रेटिंग: 4.44
अधिकतम अंक: 5
न्यूनतम अंक: 1
मतदाताओं की संख्या: 162
उत्तर छोड़ दें

आपका ईमेल पता प्रकाशित नहीं किया जाएगा| अपेक्षित स्थानों को रेखांकित कर दिया गया है *